
Summary Forest process models predict ecosystem re-
sponses from climate variables and physiological parameters.
The parameters describe key ecosystem attributes, often as
lumped averages. However, the sources and magnitude of vari-
ation in these physiological parameters are unknown, which
complicates sampling if models are to be parameterized with
field measurements. We measured several key parameters,
which had been identified by sensitivity analyses of three
models, in Abies grandis (Dougl.) Lindl. and Pseudotsuga
menziesii var. glauca (Beissn.) Franco trees throughout the
growing season. Trees were sampled at eight sites across the
interior northwest of the USA. At each site, fertilized and con-
trol plots were sampled. The design provided statistical repli-
cation for the analysis of variance within a site, allowing us to
draw inferences about a regional population of stands. Specific
leaf area (SLA) varied by canopy position and treatment (P =
0.0003), by date of sampling (P < 0.0001) and by species (P =
0.0188). Mass-based foliar nitrogen concentration (%N) in-
creased during the summer in both species (P = 0.0019), but at
a faster rate in P. menziesii var. glauca than in A. grandis. Sun
foliage had a higher mean %N (1.00, SE = 0.02%) than shade
foliage (0.92 ± 0.01%). Apparent quantum yield (Φ) varied
among treatments, between species and between canopy posi-
tions; each of these variables interacted with date of sampling
(P = 0.0207, P < 0.0001 and P = 0.0344, respectively). In
A. grandis, mean Φ values (± SE) were 0.048 ± 0.006 mol CO2

(mol incident photon)–1 for sun foliage and 0.067 ± 0.007 mol
CO2 (mol incident photon)–1 for shade foliage. In P. menziesii,
the corresponding mean Φ values were 0.032 ± 0.003 and
0.047 ± 0.004 mol CO2 (mol incident photon)–1. Parameters
SLA, %N and Φ were all influenced by date, fertilizer treat-
ment, species and crown position. We discuss methods of in-
ferring quantum yields from light response curves and their
utility for parameterizing process models. Parameter mean val-
ues are presented for each site; these tables provide a docu-
mented data set for the parameterization of models describing
the western interior forests of the USA.

Keywords: Abies grandis, foliar nitrogen concentration, pro-
cess models, Pseudotsuga menziesii var. glauca, quantum
yield, sensitivity analyses, specific leaf area.

Introduction

Process models have been successfully used to predict large-
scale phenomena, such as biomass production and atmo-
spheric gas transport, from physiological processes regulating
forest growth at the cellular level (Landsberg and Gower
1997, Waring and McDowell 2002). To make it possible to
parameterize such models, they are based on simplifying as-
sumptions. In many models, this simplification is achieved by
bulking or lumping subunits of the system and then using a
single parameter to describe the lumped subunit (Running and
Coughlan 1988, Running and Gower 1991, Aber and Federer
1992, Landsberg and Waring 1997, Waring and Running
1998). Examples of lumped parameters used to describe forest
canopies include quantum efficiency, foliar mass-to-area ratio
and nitrogen (N) concentration.

The use of lumped parameters leads to questions about how
the lumped parameters are to be measured. Ideally, measure-
ments made at a particular time and position can be used to de-
scribe the canopy as a whole (Wallin et al. 2001). Parameter
measurements are averaged across the canopy, and the mean
may be weighted by relative fluxes (Jarvis 1995). However,
many important leaf parameters vary two- to fivefold with
canopy position (Bond et al. 1999) and by similar amounts
among co-occurring species (Bassow and Bazzaz 1997), so it
can be difficult to obtain accurate estimates of mean values of
canopy parameters (Jarvis 1995).

Some parameters vary such that correlations among the pa-
rameters are maintained. These correlations provide opportu-
nities to make a simple measurement to infer a more difficult
one. For example, specific leaf area and foliar N concentration
vary considerably with canopy position, but they are corre-
lated throughout their respective ranges (Reich et al. 1991,
1997).

The current study was motivated by the need to estimate
lumped parameters for a modeling exercise. Our overall plan
is to parameterize several common, highly simplified models
of forest biogeochemistry in an effort to explain observed
changes in forest growth following fertilization across a large
swathe of the northern Rocky Mountains in western USA. In
this study, we focused on quantifying the variation in parame-
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ters identified by sensitivity analyses of Forest-BGC (Running
and Coughlan 1988, Running and Gower 1991), PnET (Aber
and Federer 1992) and 3-PG (Landsberg and Waring 1997).
The sensitivity analysis identified a small number of influen-
tial lumped parameters, including specific leaf area, photosyn-
thetic quantum yield, foliar N concentration and maximum
photosynthetic rate (Aber et al. 1996, Battaglia and Sands
1998, White et al. 2000).

We used mixed-effects models analysis of variance to ana-
lyze the sources of variation in the lumped parameters at eight
sites between the Cascade and Rocky Mountain crests in
northwestern USA. At each site, we measured foliage from the
top and bottom of the canopy to account for spatial variation,
compared treatments from a region-wide fertilization experi-
ment to account for nutrient variation, performed measure-
ments throughout the growing season to account for temporal
variation, and compared two species belonging to different
genera to account for interspecific variation. Given the diffi-
culty of explaining how the data were collected and analyzed,
running the models with the range of observed variation in the
parameters is beyond the scope of the current paper. Our goal
in this study was to evaluate a method for measuring model
parameters and to analyze the sources of parameter variation
within the forest canopy. We present the results of our analy-
ses by site, to allow the modeling community to use them for
parameterization, but also as a first step in the assessment of
the generality of the simplifying assumptions embedded in
current models.

Materials and methods

Site selection and sampling

During 1994–1996, the Intermountain Forest Tree Nutrition
Cooperative (IFTNC) at the University of Idaho established a
replicated fertilization study throughout the interior northwest
of the USA (Garrison et al. 1997). We chose eight sites with a
basaltic parent material out of the 31 possible sites. These
eight sites varied by vegetation series, aspect, elevation, basal
area, relative density and tree height (Table 1, Figure 1). Four
fertilization treatments were applied at each site, including N
only (336 kg ha–1), potassium (K) only (224 kg ha–1), N + K
(336 + 224 kg ha–1) and an unfertilized control. We measured
two species varying in shade tolerance within each fertilizer
treatment: Rocky-mountain Douglas-fir (Pseudotsuga men-
ziesii var. glauca (Beissn.) Franco), which is intermediate in
shade-tolerance, and grand fir (Abies grandis (Dougl.) Lindl.),
a more shade-tolerant species. Sun and shade foliage was sam-
pled from 1-year-old needles from one tree per species and
treatment combination. Foliage samples were harvested by
tree-climbing. Sun foliage was selected from the exposed up-
per crown (second to sixth whorl from the top) and shade fo-
liage was harvested from the lowest live whorl. Samples were
collected three times: May 28–June 21, June 27–July 14 and
September 10–22, 2001. These sampling periods (hereafter
designated June, July and September) represent the period of
leaf elongation, the beginning of the rainless period and the
peak of summer drought, respectively.
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Table 1. Characteristics of the study sites. Vegetation series refers to the classification of forest communities into habitat types based on the poten-
tial climax vegetation present (Daubenmire and Daubenmire 1968). Abbreviations: TSHE = Tsuga heterophylla (Rafn.) Sarg.; THPL = Thuja
plicata Donn; ABGR = Abies grandis; and PSME = Pseudotsuga menziesii var. glauca. Relative density index is the degree of stocking within a
stand expressed as a ratio of the mean maximum area per tree relative to the observed area (Curtis 1982). Mean precipitation and mean maximum
temperatures were calculated based on Daymet climatological summaries (www.daymet.org).

Map Site Location Latitude/ Vegetation Site Elevation Live Relative Mean Mean Mean max.
number name longitude series aspect (m) basal density tree precipitation temperature

area index height (cm year–1) (°C year–1)

1 Soldier Northern Idaho 47°20′ N TSHE 202° 976 34.4 51 19.8 101.6 13.2
Creek 116°45′ W

2 Sportsman’s Northern Idaho 47°23′ Ν TSHE 337° 945.5 18.8 27 23.8 97.4 13.4
Access 116°53′ W

3 Dick’s Northern Idaho 46°29′ Ν THPL 0° 915 37.8 55 24.4 70.3 15.5
Creek 116°15′ W

4 Upper Southeastern 46°29′ Ν ABGR 45° 1525 6.2 12 7.3 56.9 14.4
Pataha #2 Washington 117°36′ W

5 Enterprise Northeastern 45°26′ Ν PSME 247° 1433.5 26.4 37 21.4 111.6 6.6
Oregon 117°17′ W

6 Cleman Central 46°44′ Ν PSME 180° 1037 26.4 32 21.7 22.4 17.7
Mountain #2 Washington 120°42′ W

7 BZ Corner South-central 45°99′ Ν ABGR 112° 579.5 64.2 70 37.2 143.0 14.1
#2 Washington 121°29′ W

8 Snowden South-central 45°75′ Ν PSME 0° 671 33.3 40 29 116.8 14.6
Mountain #2 Washington 121°45′ W



Gas exchange measurements

We measured assimilation on excised foliage with a Li-Cor
LI-6400 portable photosynthesis system with a red/blue LED
light source and CO2 injector (Li-Cor, Lincoln, NE). The in-
strument was zeroed and chemicals were replaced daily. The
instrument was less than 6 months old so the factory calibra-
tion was considered reliable (Li-Cor 6400 manual). Measure-
ments were performed at intervals during the course of the
day. The temperature within the cuvette was maintained near
ambient, that is, between 19 and 23 °C. Cuvette CO2 concen-
trations ranged between 385 and 395 µmol mol–1. A fixed air-
flow of 500 µmol s–1 was maintained during measurements,
and the relative humidity inside the cuvette ranged between 5
and 20%.

We determined that grand fir and Douglas-fir foliage main-
tained constant CO2 assimilation rates for 50 min following
excision. Therefore, measurements never exceeded 35 min
from the time of excision. Following collection, we placed the
foliage inside the cuvette to acclimate. Once net CO2 assimila-
tion had stabilized (coefficient of variation less than 10%), gas
exchange measurements were performed. Light-response
curves were generated by decreasing photosynthetically ac-
tive radiation (PAR) from 1500 to 750, 250, 75, 30, 10 and
0 µmol m–2 s–1. We made four measurements at PAR <
100 µmol m–2 s–1 to improve our estimates of quantum yield
(Singsaas et al. 2001). Leaves were allowed to acclimate for
2 to 4 min before each measurement. Foliage samples were
stored over ice in airtight containers until they were returned to
the laboratory and stored at –70 °C.

Gas exchange measurements were expressed as projected
area of the foliage within the cuvette (Leverenz et al. 2000).
Leaf area images were generated by scanning needles at a res-
olution of 200 dpi and the projected areas were determined
with image analysis software (SigmaScan Pro 5.0, SPSS Sci-
ence, Chicago, IL, 1999). To determine the accuracy of esti-
mating leaf area with the imaging software, we measured a
subset of the foliage with precision calipers to the nearest
0.1 mm. Estimates by the two methods varied by less than 8%,
and there was no consistent bias.

Specific leaf area

To estimate specific leaf area (SLA), we scanned about 30–40
needles positioned with the adaxial side down. Following leaf
area analysis, samples were dried at 70 °C for 72 h and
weighed.

Foliar percent nitrogen

The foliage samples measured for gas exchange were ground
to a fine homogeneous texture and processed with an elemen-
tal analyzer combined with continuous-flow isotope ratio
mass spectrometry to determine elemental composition. Foliar
percent nitrogen (%N) was calculated as the mass (mg) of ni-
trogen per total mass of the sample (mg) multiplied by 100. All
%N values were verified relative to working standards of
known N concentration dispersed throughout the analysis.

Fitting light-response curves

The photosynthetic light response has been described by sev-
eral equations. We fitted three forms by nonlinear least
squares regression to determine which best described our data
(Landsberg and Gower 1997, Bond et al. 1999, Whitehead and
Gower 2001). Nonlinear curve fitting has the advantage of si-
multaneously fitting all the coefficients in the model. Thus the
curvature in the line is accounted for, allowing the fit to assign
the highest possible value to the initial slope that is consistent
with least squares constraint. Because this approach is both
objective and provides the best possible fit, it is a substantial
improvement over fitting a straight line to a subjectively cho-
sen number of points along the curve (Singsaas et al. 2001).

After fitting our data to the models, we compared the fit of
all three equations using Akaike’s information criterion. In ad-
dition, we compared the slope of the light-response curve at
PAR = 0 to the slope of a line passing through the light com-
pensation point (A = 0). Specifically, we looked for a 1:1 ratio
based on the assumption that the apparent Kok effect (Kirsch-
baum and Farquhar 1987) should have little influence (< 10%)
over this range of PAR. The slope at A = 0 describes the leaf at
a known intercellular CO2 concentration (ci). Because A = 0, ci

must be equal to ambient CO2 concentration (ca) at this point.
The concentration at PAR = 0 would be substantially higher
but by an unknown amount. Because it is difficult to measure
ci at the low stomatal conductances that occur in the linear por-
tion of the light-response curve, we concluded that A = 0 pro-
vided the best reference point.

We also compared R2 values to determine which model had
the best fit. An example light curve, chosen at random, is pre-
sented in Figure 2A, and shows that the model selected de-
scribes the general form of the data well. Additionally, exami-
nation of the lowest PAR values (Figure 2B) shows how the
model estimates quantum yield at the light compensation
point, expressed as a linear relationship, compared with the
overall nonlinear model fit. Based on the statistical compari-
sons and theoretical considerations mentioned previously, we
chose the non-rectangular hyperbolic model developed by
Hanson et al. (1987) and used it to derive estimates of quantum
yield (Φ), light compensation point (Γ), maximum assimila-
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Figure 1. Map of the study region comprising the interior northwest of
the USA. Each number corresponds to a study site listed in Table 1.
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We derived estimates of Amax, Φ and Rd from Equation 1. From
these estimates, we derived apparent quantum yield as the first
derivative when PAR = 0 (at Rd) with Equation 2.
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Three hundred and forty-one light-response curves were fit-
ted by the nls procedure of S-PLUS 2000 (Mathsoft, Cam-
bridge, MA). Following curve development, 11 outliers were
removed because their calculated values lay above the theoret-
ical maximum quantum efficiency rate of 0.125 mol C (mol
incident photon)–1 (Björkman and Demmig 1987).

Statistical analysis

Linear mixed-effects models were developed to determine the
statistical significance of the predictor (independent) variables
on the response (dependent) variables of interest. In model de-
velopment, each response variable was fit as a unique function
of multiple fixed and random effects. Each model incorpo-
rated the grouped structure of a repeated measures split-plot
design of species within treatments within sites. Sites were
used as replicates to characterize this region. In the analysis,
sites were a randomly assigned blocking variable. We chose to
block this study to reduce the error variance and isolate site
differences as nuisance variables. By reducing the nuisance
variation, blocking allows for a more precise estimate of sig-
nificant predictor variables. The geographic range included in
this study provided true replication and allowed us to draw in-
ferences about sources of variation across the entire region.

During model development, all of the response variables
were transformed to satisfy model assumptions. The assump-
tions included independence of within-group errors and ran-
dom effects, constant variance, and normally distributed
residuals and random effects (Pinheiro and Bates 2000).
Henceforth, transformed results are reported, unless the trans-
formation did not change the significance of the results (Ta-
ble 2). Unless otherwise stated, significance refers to P < 0.05.
All model development and analysis was performed with the
lme function of S-PLUS 2000 (Mathsoft). Pairwise compari-
sons of all treatment means were performed using the Tukey
Honestly Significant Difference (HSD) procedure. The HSD
was calculated from the mean-squared error from the full
model. An effect was considered significant when the 95% si-
multaneous-confidence-interval estimate was exceeded.

Results

The SLA of the 1-year-old foliage changed as current-year
canopy foliage expanded and matured over the summer.
Values of SLA increased significantly in each summer sam-
pling period; there was a 10 and 26% increase during the
June–July and June–September periods, respectively (Fig-
ure 3). Fertilizer effects on SLA depended on canopy position
(Figure 4). In shade foliage, SLA was lower in K-treated trees
than in N + K-treated trees. However, in sun foliage, SLA was
lower in N-treated trees than in N + K-treated trees.

Foliar %N values also varied in the forests we measured.
Sun foliage had a higher mean (± SE) %N (1.00 ± 0.02%)
compared with shade foliage (0.92 ± 0.01%). The %N also
varied by species and sample date (Figure 5). Douglas-fir had
a greater %N than grand fir in June and September. The differ-
ence in %N between species increased by 5 to 12% during the
summer. Likewise, the increase in %N from June to Septem-
ber was twice as high in Douglas-fir (17%) as in grand fir
(8%).

Apparent quantum yield varied by species, summer period,
canopy position and fertilizer treatment. Shade foliage had a
higher mean Φ than sun foliage for each summer period (Fig-
ure 6A). In June, the difference in Φ between canopy positions
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Figure 2. (A) Light response data for a randomly chosen sun branch.
The solid line shows the curve fitted by nonlinear regression to the
model form selected for this study (Hanson et al. 1987). (B) Subset of
the data in Figure 2A, focusing on the lowermost photosynthetically
active radiation (PAR) values. In addition to the curved line showing
the complete model fit, the quantum yield estimates are presented as
straight lines. The Hanson et al. (1987) model was used to estimate
the slope at A = 0 (light compensation point).



reached 44% (0.059 ± 0.008 and 0.033 ± 0.003 mol CO2 (mol
incident photon)–1 for shade and sun foliage, respectively).

Grand fir had a greater Φ for each period than Douglas-fir
(Figure 6B), although the two species were not always signifi-
cantly different. In June, there was no difference in Φ between
species (0.047 ± 0.005 and 0.044 ± 0.004 mol CO2 (mol inci-
dent photon)–1 for grand fir and Douglas-fir, respectively).
However, by September, Φ differed by 49% between species
(0.057 ± 0.007 and 0.029 ± 0.004 mol CO2 (mol incident pho-
ton)–1 for grand fir and Douglas-fir, respectively). Thus, Φ of
grand fir rose as the season progressed, whereas Φ of
Douglas-fir fell. The fertilizer treatments complicated predic-
tions of Φ throughout the summer period (Figure 6C). Al-
though the fertilizer treatments differentially affected Φ of
grand fir and Douglas-fir over the summer (Table 2), we were
unable to detect differences among treatment × period combi-
nations.

Maximum assimilation rate also varied across the summer
(Figure 7), increasing between June and July and then declin-
ing to a minimum in September. Mean Amax was greater for

sun foliage than for shade foliage (4.58 ± 0.31 versus 3.02 ±
0.20 µmol m–2 s–1).

Light compensation point (Γ) varied by species and canopy
position (Table 2). Douglas-fir had a higher mean Γ than grand
fir (22.15 ± 2.23 versus 10.22 ± 3.99 µmol m–2 s–1) and Γ was
higher in sun foliage than in shade foliage (21.66 ± 3.76 versus
11.98 ± 2.35 µmol m–2 s–1).

We measured a three-way interaction for Rd between can-
opy position, species and fertilizer treatment. For both species,
Rd (at 19 to 23 °C) decreased to its lowest rate in September,
when Amax was also at its minimum. Mean Rd of Douglas-fir
was highest in June and decreased thereafter (0.51 ± 0.07,
0.49 ± 0.07 and 0.24 ± 0.04 µmol m–2 s–1 for the three sam-
pling periods, respectively). In contrast, mean Rd for grand fir
peaked in July before falling to a minimum (0.31 ± 0.04,
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Table 2. Summary of the mixed-effects model analysis of variance. Unless noted, response variables did not require transformations to satisfy
model assumptions. Interactions between predictor variables are listed for each response variable only if significant (P < 0.05). Blank cells indi-
cate a nonsignificant interaction. Abbreviations: SLA = specific leaf area; %N = foliar percent nitrogen; Φ = quantum yield; Amax = maximum as-
similation; Rd = dark respiration; and Γ = light compensation point.

Predictor variables Response variables

SLA %N Φ log (Amax) Rd log(Γ)2

Canopy position < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0012 < 0.0001
Summer period < 0.0001 < 0.0001 0.1697 < 0.0001 0.0030 0.7220
Treatment 0.4215 0.7003 0.6914 0.1104 0.2902 0.2441
Species 0.0188 0.0019 0.0039 0.9769 0.0415 < 0.0001
Position × treatment 0.0003 – – – – –
Period × species – 0.0291 < 0.0001 – 0.0197 –
Treatment × species – – – – – –
Position × period – – 0.0344 – – –
Period × treatment – – 0.0207 – – –
Position × treatment × species – – – – 0.0168 –

Figure 3. Relationship between mean specific leaf area (SLA) and
sampling period for each study site. Bars represent means ± 1 SE. Dif-
ferent lowercase letters signify a significant pairwise comparison at
α = 0.05. Sample size (n) = 114, 114 and 113 for June, July and Sep-
tember, respectively.

Figure 4. Relationship between mean specific leaf area (SLA) and fer-
tilizer treatment and canopy position. Bars represent means ± 1 SE.
Different lowercase letters signify a significant pairwise comparison
at α = 0.05. For shade foliage in the control, N and N + K treatments,
n = 41 and the corresponding sample sizes for sun foliage are n = 42.
For foliage in the K treatment, n = 45 for shade foliage and n = 44 for
sun foliage.



0.55 ± 0.09 and 0.29 ± 0.05 µmol m–2 s–1 for the three sam-
pling periods, respectively).

There was a linear relationship between SLA and %N. The
slope of an ordinary least squares regression line estimated the
N concentration per area. The estimates were similar for shade
and sun leaves (0.66 ± 0.08 and 0.67 ± 0.13 g N m–2, respec-
tively).

The relationship between %N and Amax changed with can-
opy position and sampling period (Figure 8). In shade foliage,
the relationship was significant in September (P = 0.05), but
not in June (P = 0.09) or July (P = 0.88). In sun foliage, the re-
lationship was significant in June (P = 0.04), but not in July
(P = 0.40) or September (P = 0.36). In sun foliage, higher %N
was associated with lower Amax.

Over the whole study, differences in CO2 assimilation rate
at increasing PAR were evident between species and canopy
positions (Figure 9). For both canopy positions, grand fir
reached Amax at a lower irradiance than Douglas-fir. Shade
leaves reached Amax and saturated at lower irradiances (200
and 400 µmol m–2 s–1 for grand fir and Douglas-fir, respec-
tively) than sun leaves (600–700 µmol m–2 s–1 for both spe-
cies). The assimilation rate for sun foliage continued to
increase marginally up to irradiances of 1500 µmol m–2 s–1.

Discussion

Forest process models are typically parameterized by a single
value intended to characterize the entire canopy. We found
spatial, temporal and interspecific variability in several key
parameters. We discuss the observed patterns of variation in
these model parameters and compare them to previously pub-
lished results, attending to variation in methods used to esti-
mate model parameters from leaf measurements. Our focus is
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Figure 6. Relationship between mean apparent quantum yield (Φ) and
summer sampling period for canopy position (A), species (B) and fer-
tilizer treatments (C). Bars represent means ± 1 SE. Different lower-
case letters between treatment means signify a significant pairwise
comparison at α = 0.05. In (C), no significant differences were de-
tected between treatment and summer period combinations. In (A),
n = 53, 55 and 48 for the June, July and September periods, respec-
tively, for shade foliage, and n = 54, 53 and 50 for the same periods for
sun foliage. In (B), n = 47, 49 and 41 for the sampling periods for
Abies grandis (grand fir) (ABGR), and n = 60, 59 and 56 for the sam-
pling periods for Pseudotsuga menziesii var. glauca (Douglas-fir)
(PSME). In (C), sample size in the control, N and N + K treatments
was n = 27 for each summer period, and for the K treatment, n = 30 for
each summer period.

Figure 7. Relationship between maximum CO2 assimilation rate
(Amax) and summer sampling period. Bars represent means ± 1 SE.
Different lowercase letters between treatment means signify a signifi-
cant pairwise comparison at α = 0.05. For June, July and September,
n = 108, 109 and 102, respectively.

Figure 5. Relationship between percent nitrogen in the leaf calculated
on a mass-to-mass basis (%N) and summer sampling period and spe-
cies measured. Bars represent means ± 1 SE. Different lowercase let-
ters signify a significant pairwise comparison at α = 0.05. For grand
fir (ABGR), n = 48, 50 and 44 for June, July and September,
respectively. For Douglas-fir (PSME), n = 60, 59 and 58 for the same
periods, respectively.



on quantum yield and foliar N concentration, and the potential
application of these results in the parameterization and evalua-
tion of process models.

Quantum yield (Φ)

The environmental parameters influencing Φ vary among
studies, depending in part on how Φ is expressed. We note that
our values are apparent quantum yields; that is, we expressed
them relative to incident PAR, not absorbed PAR. With some
important exceptions, leaf absorptance tends to be conserva-
tive among C3 plants (Bjorkman and Demmig 1987). Quan-
tum yields are also expressed in terms of either CO2

consumption per incident photon, which is what we measured,
or O2 production per photon, which we denote ΦCO 2

and ΦΟ 2
,

respectively, in the following discussion. We also note that our

measurements were made at ambient oxygen concentration.
Because ΦΟ 2

is often measured at sub-ambient O2 to minimize
photorespiratory consumption of oxygen, ΦΟ 2

is often much
less sensitive to intercellular CO2 concentration and tempera-
ture, two important controls over photorespiration (Singsaas
et al. 2001). Most authors have found that ΦCO 2

is strongly de-
pendent on intercellular CO2 concentration and temperature
(Ehleringer and Björkman 1977, Kirschbaum and Farquhar
1987, Leverenz and Öquist 1987). Most studies have found
that Φ remains constant across light environments (Leverenz
1988, Bond et al. 1999, Schoettle and Smith 1999, Hätten-
schwiler 2001, Stenberg et al. 2001). However, Kubiske and
Pregitzer (1996) and Grassi and Minotta (2000) found that Φ
differed between sun and shade foliage of 1-year-old shoots.
Others have reported a wide range of Φ values among species
within the same forest ecosystem (Hättenschwiler 2001,
Whitehead and Gower 2001). We found that Φ was signifi-
cantly influenced by interactions between summer period and
species, treatment and canopy position.

The broad range of values for ΦCO 2
reported in the literature

may be partly related to three approaches employed in its esti-
mation. First, there are different approaches for dealing with
the Kok effect, which is the steepening of the light-response
curve as net photosynthesis becomes negative at low PAR
(Kirschbaum and Farquhar 1987, Singsaas et al. 2001). We
made several measurements in the light-limited portion of the
curve (PAR < 100 µmol m–2 s–1) to ensure that we had a good
estimate of the slope in this region. We fitted the data by non-
linear regression to a model that accounted for the convexity
of the curve while the initial slope was being fitted. This al-
lowed us to avoid the subjective issue of how many points to
include in our estimate of the initial slope (Singsaas et al.
2001) because we fitted the whole model simultaneously. Sec-
ond, we measured foliage from mature forests in the field,

TREE PHYSIOLOGY ONLINE at http://heronpublishing.com

VARIATION IN FOREST CANOPIES 597

Figure 8. Relationship between percent nitrogen in the leaf calculated
on a mass-to-mass basis (%N) and maximum CO2 assimilation rate
(Amax) for the shade and sun canopy positions (A and B, respectively).
Confidence intervals for the shade data were P = 0.09, 0.88 and 0.05
for the June, July and September periods, respectively. Confidence
intervals for the sun data were P = 0.04, 0.40 and 0.36 for the June,
July and September periods, respectively. Regression lines were fit
for significant relationships (α ≤ 0.05); specifically, the September
period for the shade data and the June period for sun data. The Sep-
tember period of the shade data had an r2 = 0.08 and a slope (± SE) of
2.5 ± 1.2, whereas the June period of the sun data had an r2 = 0.08 and
a slope (± SE) of –5.14 ± 2.47.

Figure 9. Photosynthetic light-response curves for both species and
canopy positions generated by measuring assimilation rates at in-
creasing irradiance. Each curve depicts the best fit of all measured
photosynthetic rates (a total of 341 light curves) fit to a non-rectangu-
lar hyperbola. Abbreviations: ABGR = Abies grandis (grand fir); and
PSME = Pseudotsuga menziesii var. glauca (Douglas-fir).



which remains relatively rare in forest ecology literature
(Bassow and Bazzaz 1998). Third, many previous studies
sampled small numbers of trees over narrow geographic
ranges (Korol et al. 1991, Bassow and Bazzaz 1998, Bond et
al. 1999). We used standard tree-climbing techniques to ac-
cess 57 trees in eight stands distributed across a large region
(Figure 1). Our ability to detect multiple sources of variation
in Φ might be associated with our measurement and analysis
techniques, the rarity of Φ measurements on mature trees and
the statistical power gained by our relatively large sample size.

After correcting for leaf absorptance based on the mean
value reported for conifers by Björkman and Demmig (1987),
our estimates of Φ averaged 0.038 to 0.081 mol CO2 (mol ab-
sorbed photon)–1. The mean of these Φ values is similar to that
reported for all C3 plants (0.052 mol CO2 (mol absorbed pho-
ton)–1, Ehleringer and Björkman 1977), but it is below the
mean Φ over all C3 plants at the measurement temperature
(~0.06 mol CO2 (mol absorbed photon)–1 at 19–23 °C,
Leverenz and Öquist 1987). Our mean Φ value is similar to
values reported for Scots pine during the growing season
(0.052 to 0.055 mol CO2 (mol absorbed photon)–1, Leverenz
and Öquist 1987), but above those recently reported for larch
and black spruce (0.015 mol CO2 (mol absorbed photon)–1,
Whitehead and Gower 2001) and the canopy Φ of 0.03 mol
CO2 (mol absorbed photon)–1 assumed in the original descrip-
tion of the 3-PG model (Landsberg and Waring 1997).

Relationship between SLA and %N

The tendency for shade leaves to have a greater SLA than sun
leaves is consistent with earlier observations (Niinemets 1997,
Bond et al. 1999, Monserud and Marshall 1999, Evans and
Poorter 2001). Leaf thinning is generally interpreted as a real-
location of carbon to increase light interception (Ellsworth and
Reich 1993, Chen et al. 1996, Stenberg et al. 1999, Evans and
Poorter 2001). The tendency for sun leaves to have higher N
concentrations than shade leaves has also been reported (Moo-
ney and Gulmon 1979, DeJong and Doyle 1985, Evans 1989,
Reich et al. 1991, Evans and Poorter 2001). The redeployment
of N to sun leaves has been interpreted as a reallocation of N to
increase photosynthesis (Hollinger 1996, Bond et al. 1999).
As a consequence of such reallocation, SLA and %N are often
correlated across the canopy light gradient (Field 1983,
DeJong and Doyle 1985, Oren et al. 1986, Hirose and Werger
1987, Givnish 1988, Ellsworth and Reich 1993, Niinemets
1997, Bond et al. 1999, Schoettle and Smith 1999, Grassi and
Minotta 2000, Stenberg et al. 2001).

Specific leaf area and foliar %N also varied between
Douglas-fir and grand fir. Grand fir is generally considered the
more shade-tolerant of the two species. Previous studies have
related the shade tolerance of plants to differences in their N
partitioning and the N-use efficiency of photosynthesis (See-
mann et al. 1987, Bond et al. 1999). Generally, shade-tolerant
species have the highest photosynthetic carboxylation effi-
ciency among species (Boardman 1977, Teskey and Shrestha
1985, Givnish 1988). Additionally, relative shade tolerance is
the best predictor of growth and CO2 exchange (Hätten-
schwiler 2001) and foliar morphology (Boardman 1977). In

this study, SLA was greater for grand fir than for Douglas-fir
in each combination of canopy position and sampling period.

Temporal variation was detected in SLA and %N. The SLA
of 1-year-old foliage in both canopy positions increased as the
growing season progressed. Seasonal differences in %N or
SLA have been reported previously (Oren et al. 1986, Reich et
al. 1991, Pierce et al. 1994). Because younger leaves expanded
as the older foliage thinned or lost mass, we speculate that
starch was mobilized and exported from the older foliage re-
sulting in increased SLA (Figure 3). Foliar %N also increased
between June and September, which would occur if starch
were being mobilized. Alternately, the increase in %N may
have been caused by increased N uptake. Because we were un-
able to detect a canopy position by sampling date interaction,
we conclude that large quantities of N were not being redis-
tributed within the canopy, contrary to what has been observed
by other authors (DeJong and Doyle 1985, Hirose and Werger
1987, Bond et al. 1999, Evans and Poorter 2001). This tempo-
ral variation in SLA and %N is potentially important because
models are often parameterized with constant values of these
parameters. The variation raises questions about when in the
year these parameters should be measured and what effects the
variation has on model predictions. With respect to measure-
ment time, if an average growing season value for these pa-
rameters is required, it appears that measuring at mid-season
would provide the most representative value.

Applicability of measured parameter variation

The several forms of the process model PnET (PnET, PnET-II,
and PnET-Day) assume that Amax is dependent on foliar N con-
centration (Aber and Federer 1992, Aber et al. 1995, 1996). In
a sensitivity analysis of PnET-Day, estimates of gross carbon
exchange were most sensitive to changes in Amax (Aber et al.
1996). Bassow and Bazzaz (1997) found that the correlation
between N concentration and Amax was quite robust for north-
ern hardwood forests. In contrast, the relationship is weak in
our study and apparently in conifers in general. We found that
the relationship between Amax and %N was significant on only
one date for each species, and regression lines describing the
relationship were in opposite directions. The tendency for co-
nifers to show a weak correlation between Amax and N concen-
tration has been noted before (Reich et al. 1998, Bond et al.
1999, Kloeppel et al. 2000). We speculate that these patterns
may limit the ability of PnET to predict biomass production of
the stands studied here.

Quantum yield plays a key role in the photosynthesis equa-
tion in the 3-PG model (Landsberg and Waring 1997). The
seasonal variation in Φ within species and among crown posi-
tions suggests that if models are to be parameterized with leaf
measurements, the Φ measurement would ideally account for
these sources of variation. Note that our measurements of Φ
are technically at A = 0 and, therefore, where ci equals ca. In a
leaf with a high photosynthetic rate, ci is much lower than ca,
especially in evergreen conifers (Marshall and Zhang 1994).
Models exist for correcting Φ to these low ci values (Brooks
and Farquhar 1985, Singsaas et al. 2001). Comparisons of
model predictions based on these ci-adjusted Φ values to stan-
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dard estimates may yield interesting results concerning model
sensitivity. Stable isotope ratios could provide a convenient,
integrated estimate of the ci.

Mean parameter values based on significant ANOVA tests
(Table 2) are presented in Table 3. These values describe the
range of measured variation within the interior northwest re-
gion of the USA and may be useful for parameterizing and
testing forest process models.

Conclusion

Key parameters of process models varied between species,
temporally, and spatially within a regional fertilizer trial, indi-
cating that parameterization of process models may require
additional sampling to account for this variation, especially
variation with canopy position and over the growing season.
Based on the measured variation, the appropriateness of vari-
ous bulking protocols can now be determined. As a rule of
thumb, it appears that sampling during the middle of the grow-
ing season is most likely to capture the mean values of the pa-
rameters. We conclude that variation in model parameters
must be considered as a potential source of error in ecosystem
model predictions.
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